Impact of octahedral rotations on Ruddlesden–Popper phases of antiferrodistortive perovskites
نویسنده
چکیده
This work presents the most detailed and extensive theoretical study to date of the structural configurations of Ruddlesden–Popper (RP) phases in antiferrodistortive (AFD) perovskites and formulates a program of study which can be pursued for RP phases of any AFD perovskite system. We systematically investigate the effects of oxygen octahedral rotations on the energies of RP phases in AFD perovskites (An+1BnO3n+1) for n = 1 . . . 30, providing asymptotic results for n → ∞ that give both the form of the interaction between stacking faults and the behavior of such stacking faults in isolation. We find an inverse-distance interaction between faults with a strength which varies by as much as a factor of two depending on the configuration of the octahedra. We find that the strength of this effect can be sufficient to (a) stabilize or destabilize the RP phase with respect to dissociation into the bulk perovskite and the bulk A-oxide and (b) affect the energy scales of the RP phase sufficiently to constrain the rotational states of the octahedra neighboring the stacking faults, even at temperatures where the octahedra in the bulk regions librate freely. Finally, we present evidence that the importance of the octahedral rotations can be understood in terms of changes in the distances between oxygen ions on opposing sides of the RP stacking faults.
منابع مشابه
Landau Theory of Tilting of Oxygen Octahedra in Perovskites
The list of possible commensurate phases obtained from the parent tetragonal phase of Ruddlesden-Popper (RP) systems, An+1BnC3n+1 for general n due to a single phase transition involving the reorienting of octahedra of C (oxygen) ions is reexamined using a Landau expansion. This expansion allows for the nonlinearity of the octahedral rotations and the rotation-strain coupling. It is found that ...
متن کاملRuddlesden-Popper Phase in Two-Dimensional Inorganic Halide Perovskites: A Plausible Model and the Supporting Observations.
A Ruddlesden-Popper (RP) type structure is well-known in oxide perovskites and is related to many interesting properties such as superconductivity and ferroelectricity. However, the RP phase has not yet been discovered in inorganic halide perovskites. Here, we report the direct observation of unusual structure in two-dimensional CsPbBr3 nanosheets which could be interpreted as the RP phase base...
متن کاملTranscending the slow bimolecular recombination in lead-halide perovskites for electroluminescence
The slow bimolecular recombination that drives three-dimensional lead-halide perovskites' outstanding photovoltaic performance is conversely a fundamental limitation for electroluminescence. Under electroluminescence working conditions with typical charge densities lower than 1015 cm-3, defect-states trapping in three-dimensional perovskites competes effectively with the bimolecular radiative r...
متن کاملHigh-pressure / High-temperature Synthesis of Transition Metal Oxide Perovskites
Perovskite and related Ruddlesden-Popper type transition metal oxides synthesised at high pressures and temperatures during the last decade are reviewed. More than 60 such new materials have been reported since 1995. Important developments have included perovskites with complex cation orderings on A and B sites, multiferroic bismuth-based perovskites, and new manganites showing colossal magneto...
متن کاملMagnetic color symmetry of lattice rotations in a diamagnetic material.
Oxygen octahedral rotations are the most common phase transitions in perovskite crystal structures. Here we show that the color symmetry of such pure elastic distortions is isomorphic to magnetic point groups, which allows their probing through distinguishing polar versus magnetic symmetry. We demonstrate this isomorphism using nonlinear optical probing of the octahedral rotational transition i...
متن کامل